100808	Total Quality Management	3L:0T:0P	3 credits
Common Paper (ME/LT)			

Objectives:

To facilitate the understanding of total quality management principles and processes

Contents: Module: 1

Introduction, need for quality, evolution of quality; Definitions of quality, product quality and service quality; Basic concepts of TQM, TQM framework, contributions of Deming, Juran and Crosby. Barriers to TQM; Quality statements, customer focus, customer orientation & satisfaction, customer complaints, customer retention; costs toquality. (Lectures 8)

Module: 2

TQM principles; leadership, strategic quality planning; Quality councils- employee involvement, motivation; Empowerment; Team and Teamwork; Quality circles, recognition and reward, performance appraisal; Continuous process improvement; PDCE cycle, 5S, Kaizen; Supplier partnership, Partnering, Supplier rating & selection. (Lectures 8)

Module: 3

The seven traditional tools of quality; New management tools; Six sigma-concepts, methodology, applications to manufacturing, service sector including IT, Bench marking process; FMEA-stages, types. (Lectures 8)

Module: 4

TQM tools and techniques, control charts, process capability, concepts of six sigma, Quality Function Development (QFD), Taguchi quality loss function; TPM- concepts, improvement needs, performance measures. (Lectures 8)

Module: 5

Quality systems, need for ISO 9000, ISO 9001-9008; Quality system- elements, documentation; Quality auditing, QS 9000, ISO 14000- concepts, requirements and benefits; TQM implementation in manufacturing and service sectors. (Lectures 8)

Course Outcomes:

Upon completion of this course, the students will be able to use the tools and techniques of TQM in manufacturing and service sectors.

Text Books:

- 1. Bester field D.H. et al., Total quality Management, 3rd ed., Pearson Education Asia, 2006.
- 2. Evans J.R. and Lindsay W.M., The management and Control of Quality, 8th ed., first Indian edition, Cengage Learning, 2012.
- 3. Janakiraman B. and Gopal R.K., Total Quality Management, Prentice Hall India, 2006.
- 4. Suganthi L. and Samuel A., Total Quality Management, Prentice Hall India, 2006.

10280	4
10400	4

Energy Conservation and Management

3L:0T:0P

3 credits

Objectives:

To understand the energy data from industries and carry out energy audit for energy savings

Contents: Module: 1

Introduction to energy & power scenario of world, National Energy consumption data, environmental aspects associated with energy utilization; Energy Auditing- need, types, methodology and barriers, role of energy managers, instruments of energyauditing.

(Lectures 8)

Module: 2

Components of EB billing, HT and LT supply, transformers, cable sizing; Concept of capacitors, power factor improvement, harmonics; Electric motors- motor efficiency computation, energy efficient motors; Illumination- Lux, Lumens, types of lighting, efficacy, LED lighting and scope of energy conservation in lighting. (Lectures 10)

Module: 3

Thermal systems, Boilers, Furnaces and Thermic Fluid heaters- efficiency computation and energy conservation measures; Steam distribution and usage, steam traps, condensate recovery, flash steam utilization; Insulation & Refractories. (Lectures 10)

Module: 4

Energy Conservation in major utilities, pumps, fans, blowers, compressed, air systems, Refrigeration & Air Conditioning system, Cooling Towers, DG sets. (Lectures 6)

Module: 5

Energy Economics- discount period, payback period, internal rate of return, net present value; Life Cycle costing- ESCO concept. (Lectures 6)

Course Outcomes:

Upon completion of this course, the students will be able to perform of energy auditing for the energy consumption of industries.

Text Books:

- 1. Witte L.C., Schmidt P.S. and Brown D.R., Industrial Energy Management and Utilization, Hemisphere Publ., Washington, 1988.
- 2. Callaghn P.W., Design and Management for Energy Conservation, Pergamon Press, Oxford,1981.
- 3. Murphy W.R. and McKay G., Energy Management, Butterworths, London, 1987.
- 4. Energy Manager Training Manual, Bureau of Energy Efficiency (BEE) under Ministry of Power, GOI, 2004 (available at www.energymanagertraining.com).

102807	Safety Management	3L:0T:0P	3 credits
--------	-------------------	----------	-----------

Objectives: This course is directed towards creating safety awareness, identifying hazards and mitigation of accidents along with introduction of legal requirements and following up action.

Outcome: After reading the course an engineer may develop confidence of over safe operations.

Module: 1

Need, Modern safety concepts, OSHA norms.

(Lectures 3)

Module: 2

Safety Management function, Cost analysis of accidents, system safety analysis. (Lectures 6)

Module: 3

Hazards identification and control. Pressure hazard, fire hazard and Electrical hazard.

(Lectures 12)

Module: 4

Hazard in construction industry, Hazard due to acceleration and fall, Mechanical hazard, Hazard due to heat and temperature. (Lectures 11)

Module: 5

Safe practices rules, Personal protective equipment.

(Lectures 4)

Module: 6 Ergonomics.

(Lectures 6)

Text/Reference Books:

- 1. Safety Management John V. Grimaldi& Rollin H Simmands.
- 2. Ergonomics at work Osborne, D. J, John wiley&Sons.s
- 3. Industrial safety Handbook Handey, W, Mcgraw Hill.
- 4. Designer's Guide to OSHA Mcgraw Hill.
- 5. Handbook of occupational safety and Health Johnwiley& Sons.
- 6. Industrial Accident Prevention Heinrich, Hetal, Mcgraw Hill.

Objective: To understand how the material removal by using various energy and to know how the new materials and complex parts are produced with high accuracy by using new technology.

Module:1

Introduction: Historical background of non-conventional machining processes, Classification, Basic fundamentals of various process and related comparison. (Lectures 4)

Module: 2

Mechanical Machining Process: Principle and working and applications of mechanical machining processes such as ultrasonic machining, water jet cutting. (Lectures 7)

Module: 3

Thermal and Chemical Machining Process: Principle and working and applications of thermal and chemical machining processes such as electro-discharge machining, electro-chemical machining.

(Lectures 7)

Module: 4

Non-conventional welding process: Principle and working and application of non-conventional welding processes such as laser beam welding, electron beam welding, ultrasonic welding, plasma arc welding, explosive welding, cladding under water welding, metallising.

(Lectures 10)

Module: 5

Non-conventional forming process: Principle, working and applications of high energy forming processes such as explosive forming, electro-magnetic forming, electro-discharge forming, water hammer forming, explosive compaction. (Lectures 10)

Module:6

Introduction to Micro Manufacturing: Micro manufacturing fundamentals, significance, application of NCMPs for micro manufacturing, Micro to Nano finishing processing information.

(Lectures 4)

Text Books/ References Books:

- 1. P.C. Pandey and H.S. Shah, *Modern Machining Processes*, Tata Mcgraw-Hill Publishing Co. Ltd, New Delhi, 1980.
- 2. A. Ghosh and A.K. Mallik, *Manufacturing Science*, 2nd edition, Affiliated East West Press, New Delhi.
- 3. G.F. Benedict, *Nontraditional Manufacturing Processes*, Marcel Dekker Inc., New York (ISBN 0-8247-7352-7), 1987.
- 4. V.K. Jain, Advanced Machining Processes, Allied Publishers, 2009.
- 5. J. A. McGeough, Micromachining of Engineering Materials, Taylor & Francis, 2001.

Outcome: Students will be able to understand the fundamentals of various non-conventional machining processes and their influence on performance and their applications.